加速Rcpp`anyNA`等价物
这个问题与这个老问题和这个老问题有关。
R 具有很好的 wrapper-ish 功能anyNA,可以更快地评估any(is.na(x)). 在 Rcpp 中工作时,可以通过以下方式给出类似的最小实现:
// CharacterVector example
#include <Rcpp.h>
using namespace Rcpp;
template<typename T, typename S>
bool any_na(S x){
T xx = as<T>(x);
for(auto i : xx){
if(T::is_na(i))
return true;
}
return false;
}
// [[Rcpp::export(rng = false)]]
LogicalVector any_na(SEXP x){
return any_na<CharacterVector>(x);
}
// [[Rcpp::export(rng = false)]]
SEXP overhead(SEXP x){
CharacterVector xx = as<CharacterVector>(x);
return wrap(xx);
}
/***R
library(microbenchmark)
vec <- sample(letters, 1e6, TRUE)
vec[1e6] <- NA_character_
any_na(vec)
# [1] TRUE
*/
但是将其性能与anyNA下面的基准进行比较我感到惊讶
library(microbenchmark)
microbenchmark(
Rcpp = any_na(vec),
R = anyNA(vec),
overhead = overhead(vec),
unit = "ms"
)
Unit: milliseconds
expr min lq mean median uq max neval cld
Rcpp 2.647901 2.8059500 3.243573 3.0435010 3.675051 5.899100 100 c
R 0.800300 0.8151005 0.952301 0.8577015 0.961201 3.467402 100 b
overhead 0.001300 0.0029010 0.011388 0.0122510 0.015751 0.048401 100 a
其中最后一行是从SEXPto来回转换所产生的“开销” CharacterVector(结果可以忽略不计)。显而易见,Rcpp 版本比 R 版本慢约 3.5 倍。我很好奇所以我检查了 Rcpp 的源代码is_na并没有发现性能缓慢的明显原因我继续检查R 自己的字符向量的源代码anyNA并使用 R 的 C API 思想重新实现该函数以加快速度
library(microbenchmark)
microbenchmark(
Rcpp = any_na(vec),
R = anyNA(vec),
overhead = overhead(vec),
unit = "ms"
)
Unit: milliseconds
expr min lq mean median uq max neval cld
Rcpp 2.647901 2.8059500 3.243573 3.0435010 3.675051 5.899100 100 c
R 0.800300 0.8151005 0.952301 0.8577015 0.961201 3.467402 100 b
overhead 0.001300 0.0029010 0.011388 0.0122510 0.015751 0.048401 100 a
请注意,我已经包含了简单的包装呼吁anyNA通过Rcpp::Function为好。再一次,这个实现anyNA不仅比基本实现慢一点,而且慢很多。
所以问题变成了2折:
- 为什么 Rcpp 这么慢?
- 源自 1:如何“更改”以加快代码速度?
这些问题本身并不是很有趣,但是如果这会影响 Rcpp 实现的多个部分,这些部分可能会总体上获得显着的性能提升,这很有趣。
课程信息()
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)
Matrix products: default
locale:
[1] LC_COLLATE=English_Denmark.1252 LC_CTYPE=English_Denmark.1252 LC_MONETARY=English_Denmark.1252 LC_NUMERIC=C LC_TIME=English_Denmark.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 cmdline.arguments_0.0.1 glue_1.4.2 R6_2.5.0 Rcpp_1.0.6
loaded via a namespace (and not attached):
[1] codetools_0.2-18 lattice_0.20-41 mvtnorm_1.1-1 zoo_1.8-8 MASS_7.3-53 grid_4.0.3 multcomp_1.4-15 Matrix_1.2-18 sandwich_3.0-0 splines_4.0.3
[11] TH.data_1.0-10 tools_4.0.3 survival_3.2-7 compiler_4.0.3
编辑(不仅是 Windows 问题):
我想确保这不是“Windows 问题”,因此我在运行 linux 的 Docker 容器中检查并执行了该问题。结果如下所示,非常相似
# Unit: milliseconds
# expr min lq mean median uq max neval
# Rcpp 2.3399 2.62155 4.093380 3.12495 3.92155 26.2088 100
# R 0.7635 0.84415 1.459659 1.10350 1.42145 12.1148 100
# R_C_api 2.3358 2.56500 3.833955 3.11075 3.65925 14.2267 100
# Rcpp_Function 0.8163 0.96595 1.574403 1.27335 1.56730 11.9240 100
# overhead 0.0009 0.00530 0.013330 0.01195 0.01660 0.0824 100
会话信息:
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-openmp/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 Rcpp_1.0.5
loaded via a namespace (and not attached):
[1] compiler_4.0.2 tools_4.0.2
回答
这是一个有趣的问题,但答案非常简单:STRING_ELTR 内部使用的一个版本有两个版本,或者如果您将USE_RINTERNALS宏设置为in Rinlinedfuns.h,一个用于 plebs in memory.c。
对比两个版本,可以看到pleb版本的check更多,这完全说明了速度上的差异。
如果你真的想要速度而不关心安全,你通常可以至少比 R 少一点。
// [[Rcpp::export(rng = false)]]
bool any_na_unsafe(SEXP x) {
SEXP* ptr = STRING_PTR(x);
R_xlen_t n = Rf_xlength(x);
for(R_xlen_t i=0; i<n; ++i) {
if(ptr[i] == NA_STRING) return true;
}
return false;
}
长椅:
> microbenchmark(
+ R = anyNA(vec),
+ R_C_api = any_na2(vec),
+ unsafe = any_na_unsafe(vec),
+ unit = "ms"
+ )
Unit: milliseconds
expr min lq mean median uq max neval
R 0.5058 0.52830 0.553696 0.54000 0.55465 0.7758 100
R_C_api 1.9990 2.05170 2.214136 2.06695 2.10220 12.2183 100
unsafe 0.3170 0.33135 0.369585 0.35270 0.37730 1.2856 100
尽管这样写是不安全的,但如果您在开始时在循环之前添加一些检查,那就没问题了。