如何在`std::variant`包装类中使用重载`operator==`来比较SettingVsSetting和TvsT?
我正在尝试为operator==围绕std::variant. 这个想法是Setting该类与其他Setting对象以及变体支持的类型具有可比性。我已经在没有模板的情况下解决了这个问题,因为它很容易写出operators==,但是学习模板方式对我来说很重要。
所以,这就是我希望Setting使用的方式:
Setting s1("string");
Setting s2("string");
s1 == s2; // okay, equals true
也
Setting s3("string");
s3 == "string"; // should equal true
std::string s4 = "string";
s3 == s4; // also True
这是我到目前为止所得到的,尽管我很确定我还有很长的路要走。策略是对 进行模板化operator=,如果模板参数T是有效的变体 ( setting_t) 类型,则从变体中提取值作为类型T并执行比较(T与 比较T)。或者, whenT是 another Setting,我们可以直接比较setting_成员变量(Setting与 比较Setting)。
#include <type_traits>
#include <variant>
using setting_t = std::variant<std::string, int, double>;
/**
* Utility which is true when
* type T is in a variant, false otherwise.
* For instance,
* std::string x("a String");
* bool truth = isValidVariantType<decltype(x), setting_t>(); // true
*
* unsigned long x = 4;
* bool truth = isValidVariantType<decltype(x), setting_t>(); // false
*/
template<typename T, typename ALL_T>
struct isValidVariantType;
template<typename T, typename... ALL_T>
struct isValidVariantType<T, std::variant<ALL_T...>>
: public std::disjunction<std::is_same<T, ALL_T>...> {
};
class Setting {
public:
explicit Setting(setting_t setting)
: setting_(std::move(setting)) {}
template <typename T,
class = typename std::enable_if<isValidVariantType<T, setting_t>::value>::type>
bool operator==(const T& setting){
T val = std::get<T>(setting);
return val == setting;
}
private:
setting_t setting_;
};
我现在已经花了很多时间在这上面,所以我很感激你能给我的任何建议。提前致谢!
编辑 - 编译器错误
根据要求,这是编译器当前生成的内容
当我运行 SettingTests.SettingVsSetting
TEST(SettingTests, SettingVsSetting){
Setting setting1("a String");
Setting setting2("a String");
// bool truth = setting1 == setting2;
}
生成以下编译器消息:
/home/ciaran/SettingTests/SRC/TemplateTutorialTests.cpp: In member function ‘virtual void SettingTests_SettingVsSetting_Test::TestBody()’:
/home/ciaran/SettingTests/SRC/TemplateTutorialTests.cpp:11:27: error: no match for ‘operator==’ (operand types are ‘Setting’ and ‘Setting’)
11 | bool truth = setting1 == setting2;
| ~~~~~~~~ ^~ ~~~~~~~~
| | |
| Setting Setting
In file included from /home/ciaran/SettingTests/SRC/TemplateTutorialTests.cpp:2:
/home/ciaran/SettingTests/SRC/TermplateTutorial.hpp:32:10: note: candidate: ‘template<class T, class> bool Setting::operator==(const T&)’
32 | bool operator==(const T& setting){
| ^~~~~~~~
/home/ciaran/SettingTests/SRC/TermplateTutorial.hpp:32:10: note: template argument deduction/substitution failed:
/home/ciaran/SettingTests/SRC/TermplateTutorial.hpp:31:13: error: no type named ‘type’ in ‘struct std::enable_if<false, void>’
31 | class = typename std::enable_if<isValidVariantType<T, setting_t>::value>::type>
| ^~~~~
同时 Setting.SettingVsString
TEST(SettingTests, SettingVsString){
Setting setting1("a String");
std::string setting2("a String");
bool truth = setting1 == setting2;
}
产生
/home/ciaran/SettingTests/SRC/TermplateTutorial.hpp: In instantiation of ‘bool Setting::operator==(const T&) [with T = std::__cxx11::basic_string<char>; <template-parameter-1-2> = void]’:
/home/ciaran/SettingTests/SRC/TemplateTutorialTests.cpp:17:30: required from here
/home/ciaran/SettingTests/SRC/TermplateTutorial.hpp:33:28: error: no matching function for call to ‘get<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >(const std::__cxx11::basic_string<char>&)’
33 | T val = std::get<T>(setting);
| ~~~~~~~~~~~^~~~~~~~~
In file included from /usr/include/c++/10/bits/unique_ptr.h:36,
from /usr/include/c++/10/memory:83,
from /home/ciaran/SettingTests/googletest/googletest/include/gtest/gtest.h:57,
from /home/ciaran/SettingTests/SRC/TemplateTutorialTests.cpp:1:
/usr/include/c++/10/utility:223:5: note: candidate: ‘template<long unsigned int _Int, class _Tp1, class _Tp2> constexpr typename std::tuple_element<_Int, std::pair<_Tp1, _Tp2> >::type& std::get(std::pair<_Tp1, _Tp2>&)’
223 | get(std::pair<_Tp1, _Tp2>& __in) noexcept
| ^~~
/usr/include/c++/10/utility:223:5: note: template argument deduction/substitution failed:
/usr/include/c++/10/utility:228:5: note: candidate: ‘template<long unsigned int _Int, class _Tp1, class _Tp2> constexpr typename std::tuple_element<_Int, std::pair<_Tp1, _Tp2> >::type&& std::get(std::pair<_Tp1, _Tp2>&&)’
228 | get(std::pair<_Tp1, _Tp2>&& __in) noexcept
| ^~~
... (it goes on like this for a while)
编辑 3 - 替代 operator==
template<typename T,
class = typename std::enable_if<isValidVariantType<T, setting_t>::value>::type>
bool operator==(const T &setting) {
if (auto val = std::get_if<T>(&setting_)){
return *val == setting;
};
return false;
}
回答
你有一个错字;您正在调用std::get该setting参数,而不是this->setting_. 修复使您的代码编译。
但是你可以做得更好。
template<class D, class T>
class SettingEqual {
D const& self() const { return *static_cast<D const*>(this); }
D & self() { return *static_cast<D*>(this); }
decltype(auto) setting() { return self().setting_; }
decltype(auto) setting() const { return self().setting_; }
friend bool operator==( SettingEqual const& self, T const& t ) {
if (!std::holds_alternative<T>(self.setting())) return false;
return std::get<T>(self.setting()) == t;
}
friend bool operator==( T const& t, SettingEqual const& self ) {
return (self==t);
}
friend bool operator!=( T const& t, SettingEqual const& self ) {
return !(self==t);
}
friend bool operator!=( SettingEqual const& self, T const& t ) {
return !(self==t);
}
};
template<class...Ts>
class SettingT:
public SettingEqual<SettingT<Ts...>, Ts>...
{
template<class D, class T>
friend class SettingEqual;
public:
explicit SettingT(std::variant<Ts...> setting)
: setting_(std::move(setting)) {}
private:
std::variant<Ts...> setting_;
};
using Setting = SettingT<std::string, int, double>;
这在左侧和右侧引入了一个==和!=重载,参与重载决议。
它还检查类型是否匹配,并表示不匹配的类型不相等。
使用的技术是“CRTP”,在那里我将实现推到一个父类中,该类静态转换向下,以及 Koenig 或 ADL 朋友运算符,这让我将非模板operator==s 注入到查找中Setting == something以参与重载解析。
活生生的例子。
现在这还不错,但它遇到了将事物转换为T. 因此SettingT<std::string> == "hello"熄灭,并创建一个std::string,然后放"hello"它,然后比较std::string在SettingT进去。
真的,我们只想将 直接分派"hello"给std::string==,或者做一些更好的事情。
template<class T>
struct tag_t {using type=T;};
template<class T>
constexpr tag_t<T> tag{};
template<class T>
struct overload_detect {
auto operator()(T const&){return tag<T>;};
};
template<class...Ts>
struct overload_detector:overload_detect<Ts>... {
using overload_detect<Ts>::operator()...;
};
template<class T0, class...Ts>
using best_conversion = typename decltype(overload_detector<Ts...>{}( std::declval<T0 const&>() ))::type;
template<class T, class...Ts>
concept any_conversion = requires (T a) {
{ (std::void_t<best_conversion<T, Ts...>>)(0) };
};
template<class...Ts>
class SettingT
{
public:
explicit SettingT(std::variant<Ts...> setting)
: setting_(std::move(setting)) {}
template<any_conversion<Ts...> U>
friend bool operator==(SettingT const& self, U const& u) {
using T = best_conversion<U, Ts...>;
if (!std::holds_alternative<T>(self.setting_)) return false;
return std::get<T>(self.setting_) == u;
}
template<any_conversion<Ts...> U>
friend bool operator==(U const& u,SettingT const& self) {
return self==u;
}
template<any_conversion<Ts...> U>
friend bool operator!=(U const& u,SettingT const& self) {
return !(self==u);
}
template<any_conversion<Ts...> U>
friend bool operator!=(SettingT const& self, U const& u) {
return !(self==u);
}
private:
std::variant<Ts...> setting_;
};
现在best_conversion<X, Ys...>找到Ysfor之间的最佳转换X并返回该类型,我们==不先进行转换就调度到。
== 可以自由地进行转换,或者它可以选择做一些更有效的事情。
活生生的例子。