如何在azureml.core.Environment或azureml.core.ScriptRunConfig类中使用azureml.core.runconfig.DockerConfiguration类
我使用 Microsoft Azure 机器学习 (Azure-ml) 来运行我的 (python) 实验。
为了指定我使用的 VM 和 python 环境:
from azureml.core import Environment
from azureml.core import ScriptRunConfig
# Other imports and code...
# Specify VM and Python environment:
vm_env = Environment.from_conda_specification(name='my-test-env', file_path=PATH_TO_YAML_FILE)
vm_env.docker.enabled = True
vm_env.docker.base_image = 'mcr.microsoft.com/azureml/openmpi3.1.2-cuda10.2-cudnn7-ubuntu18.04'
# Finally, use the environment in the ScriptRunConfig:
src = ScriptRunConfig(source_directory=DEPLOY_CONTAINER_FOLDER_PATH,
script=SCRIPT_FILE_TO_EXECUTE,
arguments=EXECUTE_ARGUMENTS,
compute_target=compute_target,
environment=vm_env)
我收到该行的以下警告vm_env.docker.enabled = True:
'enabled' is deprecated. Please use the azureml.core.runconfig.DockerConfiguration object with the 'use_docker' param instead.
关于DockerSection Class和的文档对于DockerConfiguration Class应用DockerConfiguration Class.
我无法弄清楚如何使用该azureml.core.runconfig.DockerConfiguration对象。有人可以为我提供一个例子吗?谢谢!
回答
该ScriptRunConfig班现在接受一个docker_runtime_config参数,它是你传递DockerConfiguration的对象。
所以,代码看起来像这样:
from azureml.core import Environment
from azureml.core import ScriptRunConfig
from azureml.core.runconfig import DockerConfiguration
# Other imports and code...
# Specify VM and Python environment:
vm_env = Environment.from_conda_specification(name='my-test-env', file_path=PATH_TO_YAML_FILE)
vm_env.docker.base_image = 'mcr.microsoft.com/azureml/openmpi3.1.2-cuda10.2-cudnn7-ubuntu18.04'
docker_config = DockerConfiguration(use_docker=True)
# Finally, use the environment in the ScriptRunConfig:
src = ScriptRunConfig(source_directory=DEPLOY_CONTAINER_FOLDER_PATH,
script=SCRIPT_FILE_TO_EXECUTE,
arguments=EXECUTE_ARGUMENTS,
compute_target=compute_target,
environment=vm_env,
docker_runtime_config=docker_config)
THE END
二维码