在r中的数据框中循环线性回归输出
我在下面有一个数据集,我想在其中对每个国家和州进行线性回归,然后在数据集中绑定预测值:
添加三列后的最终数据框:
我已经为一个国家和一个地区做了,但想为每个国家和地区做,把预测的上下限值放回cbind设置的数据中:
data <- data.frame(country = c("US","US","US","US","US","US","US","US","US","US","UK","UK","UK","UK","UK"),
Area = c("G","G","G","G","G","I","I","I","I","I","A","A","A","A","A"),
week = c(1,2,3,4,5,1,2,3,4,5,1,2,3,4,5),amount = c(12,23,34,32,12,12,34,45,65,45,45,34,23,43,43))
data_1 <- data[(data$country=="US" & data$Area=="G"),]
model <- lm(amount ~ week, data = data_1)
pre <- predict(model,newdata = data_1,interval = "prediction",level = 0.95)
pre
我如何为国家和地区的其他组合循环这个?
回答
我们还可以使用augment包中的函数broom来获取您想要的信息:
library(purrr)
library(broom)
data %>%
group_by(country, Area) %>%
nest() %>%
mutate(models = map(data, ~ lm(amount ~ week, data = .)),
aug = map(models, ~ augment(.x, interval = "prediction"))) %>%
unnest(aug) %>%
select(country, Area, amount, week, .fitted, .lower, .upper)
# A tibble: 15 x 7
# Groups: country, Area [3]
country Area amount week .fitted .lower .upper
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 US G 12 1 20.8 -27.7 69.3
2 US G 23 2 21.7 -22.0 65.4
3 US G 34 3 22.6 -19.4 64.6
4 US G 32 4 23.5 -20.2 67.2
5 US G 12 5 24.4 -24.1 72.9
6 US I 12 1 20.8 -33.9 75.5
7 US I 34 2 30.5 -18.8 79.8
8 US I 45 3 40.2 -7.17 87.6
9 US I 65 4 49.9 0.595 99.2
10 US I 45 5 59.6 4.90 114.
11 UK A 45 1 36.6 -6.05 79.2
12 UK A 34 2 37.1 -1.34 75.5
13 UK A 23 3 37.6 0.667 74.5
14 UK A 43 4 38.1 -0.341 76.5
15 UK A 43 5 38.6 -4.05 81.2
回答
...和基础 R 解决方案:
data <- data.frame(country = c("US","US","US","US","US","US","US","US","US","US","UK","UK","UK","UK","UK"),
Area = c("G","G","G","G","G","I","I","I","I","I","A","A","A","A","A"),
week = c(1,2,3,4,5,1,2,3,4,5,1,2,3,4,5),amount = c(12,23,34,32,12,12,34,45,65,45,45,34,23,43,43))
splitVar <- paste0(data$country,"-",data$Area)
dfList <- split(data,splitVar)
result <- do.call(rbind,lapply(dfList,function(x){
model <- lm(amount ~ week, data = x)
cbind(x,predict(model,newdata = x,interval = "prediction",level = 0.95))
}))
result
...结果:
country Area week amount fit lwr upr
UK-A.11 UK A 1 45 36.6 -6.0463638 79.24636
UK-A.12 UK A 2 34 37.1 -1.3409128 75.54091
UK-A.13 UK A 3 23 37.6 0.6671656 74.53283
UK-A.14 UK A 4 43 38.1 -0.3409128 76.54091
UK-A.15 UK A 5 43 38.6 -4.0463638 81.24636
US-G.1 US G 1 12 20.8 -27.6791493 69.27915
US-G.2 US G 2 23 21.7 -21.9985147 65.39851
US-G.3 US G 3 34 22.6 -19.3841749 64.58417
US-G.4 US G 4 32 23.5 -20.1985147 67.19851
US-G.5 US G 5 12 24.4 -24.0791493 72.87915
US-I.6 US I 1 12 20.8 -33.8985900 75.49859
US-I.7 US I 2 34 30.5 -18.8046427 79.80464
US-I.8 US I 3 45 40.2 -7.1703685 87.57037
US-I.9 US I 4 65 49.9 0.5953573 99.20464
US-I.10 US I 5 45 59.6 4.9014100 114.29859
回答
这是tidyverse对country和 的每种组合执行此操作的方法Area。
library(tidyverse)
data %>%
group_by(country, Area) %>%
nest() %>%
mutate(model = map(data, ~ lm(amount ~ week, data = .x)),
result = map2(model, data, ~data.frame(predict(.x, newdata = .y,
interval = "prediction",level = 0.95)))) %>%
ungroup %>%
select(-model) %>%
unnest(c(data, result))
# country Area week amount fit lwr upr
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 US G 1 12 20.8 -27.7 69.3
# 2 US G 2 23 21.7 -22.0 65.4
# 3 US G 3 34 22.6 -19.4 64.6
# 4 US G 4 32 23.5 -20.2 67.2
# 5 US G 5 12 24.4 -24.1 72.9
# 6 US I 1 12 20.8 -33.9 75.5
# 7 US I 2 34 30.5 -18.8 79.8
# 8 US I 3 45 40.2 -7.17 87.6
# 9 US I 4 65 49.9 0.595 99.2
#10 US I 5 45 59.6 4.90 114.
#11 UK A 1 45 36.6 -6.05 79.2
#12 UK A 2 34 37.1 -1.34 75.5
#13 UK A 3 23 37.6 0.667 74.5
#14 UK A 4 43 38.1 -0.341 76.5
#15 UK A 5 43 38.6 -4.05 81.2