如何使用make-array或coerce将列表转换为CommonLisp中具有相同输出的一维数组(向量)?
我想从一个简单的列表转换:
'(1 2 3)
到一维数组(向量):
#(1 2 3)
我发现这个问题很相似,但没有涵盖这个问题。
我也设法找到了实现它的方法。不确定它是否是最好的:
CL-USER> (coerce '(1 2 3) 'vector)
#(1 2 3)
CL-USER> (type-of *)
(SIMPLE-VECTOR 3)
我想知道是否可以使用make-array来达到相同的结果。我试过:
CL-USER> (make-array '() :initial-contents '(1 2 3))
#0A(1 2 3)
CL-USER> (type-of *)
(SIMPLE-ARRAY T NIL)
这是接近的,但我不明白#0A在#0A(1 2 3)。
出于某种我不明白的原因,此输出不适用于进一步的组合,例如aref:
CL-USER> (aref #0A(1 2 3) 0)
; Evaluation aborted on #<SIMPLE-ERROR "Wrong number of subscripts, ~W, for array of rank ~W." {1003C07793}>.
Is it possible to use make-array to achieve the same result as coerce?
What are the differences between these two approaches?
Is one of them faster or more elegant than the other?
回答
COERCE is fine, you can even specify the element-type if you want:
USER> (coerce '(1 2 3) '(vector fixnum))
#(1 2 3)
USER> (describe *)
#(1 2 3)
[simple specialized vector]
Element-type: FIXNUM
Length: 3
You can do the same with make-array, but you need to give the right dimension. The dimension parameter indicates how many rows, columns, etc. the possibly multi-dimensional array has. It should be a list, but when you only have one dimension, it can just be a number. Both forms here are equivalent:
USER> (make-array 3 :initial-contents '(1 2 3))
#(1 2 3)
USER> (make-array '(3) :initial-contents '(1 2 3))
#(1 2 3)
Usually you would call (length list). The added value compared to coerce is that you can specify the :fill-pointer or :adjustable arguments, something that the type argument of coerce cannot convey.
The printed representation of an array is #nA(), where n is the number of dimensions of the array, where the number and A is omitted if its a vector (n = 1). For example:
USER> (make-array '(10 2) :initial-element 0)
#2A((0 0) (0 0) (0 0) (0 0) (0 0) (0 0) (0 0) (0 0) (0 0) (0 0))
For a given array of dimension n, you access the elements with aref and as many arguments as there are dimensions, in row-major order (the same order you specified the dimensions in make-array).
USER> (aref * 5 1)
0 (0 bits, #x0, #o0, #b0)
In your example, you defined an array of dimension 0, because you wrote '() (a.k.a. just () or nil) as the dimension. This can be used if you need a box to store a single element:
USER> (defparameter *box* (make-array nil :element-type '(mod 8)))
*BOX*
USER> (describe *box*)
#0A0
[simple specialized array]
Element-type: (UNSIGNED-BYTE 4)
Dimensions: NIL
Storage vector: #<(SIMPLE-ARRAY (UNSIGNED-BYTE 4) (1)) {101EA0C59F}>
; No values
USER> (setf (aref *box*) 7)
7 (3 bits, #x7, #o7, #b111)
USER> (incf (aref *box*))
8 (4 bits, #x8, #o10, #b1000)
USER> (aref *box*)
8 (4 bits, #x8, #o10, #b1000)
(as you can see, the values that can be stored in the array are the ones corresponding to the upgraded-element-type, here (unsigned-byte 4); for example, (setf (aref *box*) (expt 2 16)) signals an error)
It looks like :initial-contents had the same result as :initial-element, because with your example the content of the zero-dimensional array was the list (1 2 3)
Is one of them faster or more elegant than the other?
I try to use coerce when possible because it's shorter to write and it looks more descriptive of what I am doing. I don't think it is faster, unless you know in advance the length of the list.