以相同文本字符串开头的列的总和
我想取以相同文本字符串开头的列的值的总和(按行)。下面是我的原始 df 课程失败。
原始df:
ID P_English_2 P_English_3 P_German_1 P_Math_1 P_Math_3 P_Physics_2 P_Physics_4
56 1 3 1 2 0 0 3
11 0 0 0 1 4 1 0
6 0 0 0 0 0 1 0
43 1 2 1 0 0 1 1
14 0 1 0 0 1 0 0
所需的 df:
ID P_English P_German P_Math P_Physics
56 4 1 2 3
11 0 0 5 1
6 0 0 0 1
43 3 1 0 2
14 1 0 1 0
试过的代码:
import pandas as pd??
df = pd.DataFrame({"ID": [56,11,6,43,14],?
"P_Math_1": [2,1,0,0,0],?
"P_English_3": [3,0,0,2,1],
? "P_English_2": [1,0,0,1,0],?
"P_Math_3": [0,4,0,0,1],?
"P_Physics_2": [0,1,1,1,0],
? "P_Physics_4": [3,0,0,1,0],?
"P_German_1": [1,0,0,1,0]})?
print(df)??
categories = ['P_Math', 'P_English', 'P_Physics', 'P_German']?
def correct_categories(cols):
? return [cat for col in cols for cat in categories if col.startswith(cat)]?
result = df.groupby(correct_categories(df.columns),axis=1).sum()
?print(result)
回答
让我们用axis=1试试groupby:
# extract the subjects
subjects = [x[0] for x in df.columns.str.rsplit('_',n=1)]
df.groupby(subjects, axis=1).sum()
输出:
ID P_English P_German P_Math P_Physics
0 56 4 1 2 3
1 11 0 0 5 1
2 6 0 0 0 1
3 43 3 1 0 2
4 14 1 0 1 0
或者您可以使用wide_to_long,假设ID是唯一值:
(pd.wide_to_long(df, stubnames=categories,
i=['ID'], j='count', sep='_')
.groupby('ID').sum()
)
输出:
P_Math P_English P_Physics P_German
ID
56 2.0 4.0 3.0 1.0
11 5.0 0.0 1.0 0.0
6 0.0 0.0 1.0 0.0
43 0.0 3.0 2.0 1.0
14 1.0 1.0 0.0 0.0