根据多列聚合函数的条件结果计算唯一记录
我的数据如下所示:
df = pd.DataFrame({'ID': [1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4,
4, 4, 5, 5, 5],
'group': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B',
'B', 'B', 'B', 'B', 'B', 'B'],
'attempts': [0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 0, 0, 1, 0],
'successes': [1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 1, 0, 1],
'score': [None, 5, 5, 4, 5, 4, 5, None, 1, 5,
0, 1, None, None, 1, None]})
## df output
ID group attempts successes score
0 1 A 0 1 None
1 1 A 1 0 5
2 1 A 1 0 5
3 1 A 1 0 4
4 2 A 1 0 5
5 2 A 1 0 4
6 3 A 1 0 5
7 3 A 0 1 None
8 3 A 1 0 1
9 4 B 1 0 5
10 4 B 1 0 0
11 4 B 1 0 1
12 4 B 0 1 None
13 5 B 0 1 None
14 5 B 1 0 1
15 5 B 0 1 None
我正在尝试按两列 ( group, score)分组,并ID 在首先确定哪些 ( group, ID)组successes在所有score值中至少有 1 个计数后计算唯一的数量。换句话说,如果它至少有一个相关的成功,我只想在聚合中计算一次(唯一)ID。我也只想计算每个 ( group, ID) 对的唯一 ID ,而不管它attempt_counts包含的数量(即,如果有 5 个成功计数的总和,我只想包括 1 个)。
的successes和attempts列是二进制(仅1或0)。例如,对于 ID = 1,组 = A,至少有 1 次成功。因此,在计算每个 ( group, score)的唯一 ID 数量时,我将包括ID.
我希望最终输出看起来像这样,以便我可以计算每个 ( group, score) 组合的唯一成功与唯一尝试的比率。
group score successes_count attempts_counts ratio
A 5 2 3 0.67
4 1 2 0.50
1 1 1 1.0
0 0 0 inf
B 5 1 1 1.0
4 0 0 inf
1 2 2 1.0
0 1 1 1.0
到目前为止,我已经能够运行一个数据透视表来计算每个 ( group, ID) 的总和,以识别那些至少有 1 个成功的 ID。但是,我不确定使用它来达到我想要的最终状态的最佳方法。
p = pd.pivot_table(data=df_new,
values=['ID'],
index=['group', 'ID'],
columns=['successes', 'attempts'],
aggfunc={'ID': 'count'})
# p output
ID
successes 0 1
attempts 1 0
group ID
A 1 3.0 1.0
2 2.0 NaN
3 2.0 1.0
B 4 3.0 1.0
5 1.0 2.0