根据多列聚合函数的条件结果计算唯一记录

我的数据如下所示:

df = pd.DataFrame({'ID': [1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4,
                          4, 4, 5, 5, 5],
                   'group': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B',
                             'B', 'B', 'B', 'B', 'B', 'B'],
                   'attempts': [0, 1, 1, 1, 1, 1, 1, 0, 1,
                                1, 1, 1, 0, 0, 1, 0],
                   'successes': [1, 0, 0, 0, 0, 0, 0, 1, 0,
                                 0, 0, 0, 1, 1, 0, 1],
                   'score': [None, 5, 5, 4, 5, 4, 5, None, 1, 5,
                             0, 1, None, None, 1, None]})

## df output
   ID group attempts successes score
0   1     A        0         1  None
1   1     A        1         0     5
2   1     A        1         0     5
3   1     A        1         0     4
4   2     A        1         0     5
5   2     A        1         0     4
6   3     A        1         0     5
7   3     A        0         1  None
8   3     A        1         0     1
9   4     B        1         0     5
10  4     B        1         0     0
11  4     B        1         0     1
12  4     B        0         1  None
13  5     B        0         1  None
14  5     B        1         0     1
15  5     B        0         1  None

我正在尝试按两列 ( group, score)分组,并ID 首先确定哪些 ( group, ID)组successes在所有score值中至少有 1 个计数计算唯一的数量。换句话说,如果它至少有一个相关的成功,我只想在聚合中计算一次(唯一)ID。我也只想计算每个 ( group, ID) 对的唯一 ID ,而不管它attempt_counts包含的数量(即,如果有 5 个成功计数的总和,我只想包括 1 个)。

successesattempts列是二进制(仅1或0)。例如,对于 ID = 1,组 = A,至少有 1 次成功。因此,在计算每个 ( group, score)的唯一 ID 数量时,我将包括ID.

我希望最终输出看起来像这样,以便我可以计算每个 ( group, score) 组合的唯一成功与唯一尝试的比率。

group score successes_count attempts_counts ratio
    A     5              2                3  0.67
          4              1                2  0.50
          1              1                1   1.0              
          0              0                0   inf
    B     5              1                1   1.0
          4              0                0   inf
          1              2                2   1.0
          0              1                1   1.0

到目前为止,我已经能够运行一个数据透视表来计算每个 ( group, ID) 的总和,以识别那些至少有 1 个成功的 ID。但是,我不确定使用它来达到我想要的最终状态的最佳方法。

p = pd.pivot_table(data=df_new,
                values=['ID'],
                index=['group', 'ID'],
                columns=['successes', 'attempts'],
                aggfunc={'ID': 'count'})
# p output
            ID     
successes    0    1
attempts     1    0
group ID           
A     1    3.0  1.0
      2    2.0  NaN
      3    2.0  1.0
B     4    3.0  1.0
      5    1.0  2.0

以上是根据多列聚合函数的条件结果计算唯一记录的全部内容。
THE END
分享
二维码
< <上一篇
下一篇>>